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Endurance performance depends on the body’s ability to up-
take and utilize oxygen to generate energy (4, 10, 12). As such,
scientists often determine exercise intensity and predict endur-
ance performance using the percentage of an individual’s
maximum aerobic capacity (often expressed as %V̇O2max) (4,
10, 12). Scientists calculate %V̇O2max using an individual’s
mode-specific, steady-state submaximal V̇O2 (a measure of
exercise economy) and V̇O2max. However, V̇O2 is only a proxy
for the rate of energy that an individual can generate via
aerobic metabolism, because it does not account for substrate
oxidation, which affects the energy yield per volume of O2

uptake (1, 5, 16). The energy yield per volume of O2 uptake is
~7% greater for carbohydrate versus fat oxidation (16). There-
fore, accounting for substrate oxidation leads to more accurate
calculations of the rate of aerobic energy expended during
physical activity and exercise. Accordingly, some recent stud-
ies have begun expressing exercise economy as the rate of
aerobic energy expenditure (Ėaero) (e.g., W/kg or kcal·kg�1·
min�1) rather than V̇O2 (e.g., ml O2·kg�1·min�1) (5, 9, 19, 20).

We propose that exercise economy (Ėaero), maximal aerobic
capacity (Ėaero max), and hence intensity (%Ėaero max), should be
calculated using units of aerobic energy rather than oxygen. As
relative aerobic intensity increases, the ratio of oxidized car-
bohydrates to fats usually rises until carbohydrates constitute
nearly 100% of the oxidized substrates (2, 18). Therefore,
Ėaero max can be calculated using expired gas analysis and the
energy yield of oxidized carbohydrates [21.745 J·ml O2

�1

(16)] when the respiratory exchange ratio (RER) is �1.0, such
as at V̇O2max. Subsequently, %Ėaero max can be calculated using
submaximal and maximal Ėaero.

Compared with relative aerobic intensity expressed as
%V̇O2max, %Ėaero max elicits numerically lower relative aerobic
intensities when RER is �1.0 and yields the same relative
aerobic intensities when RER �1.0 (Fig. 1). Since there is
usually a lower ratio of oxidized carbohydrates to fats at
relatively easier workloads/slower movement velocities (2,
18), plots of %Ėaero max versus workload/velocity have greater
slopes than plots of %V̇O2max versus workload/velocity (Fig.
1). Thus, the difference between %Ėaero max and %V̇O2max is
greater at lower relative aerobic intensities (Fig. 1).

Data from Burke et al. (3) provide a clear example of the
differences that can occur between the two methods of calcu-
lating relative aerobic intensity. They reported V̇O2 and RER

for elite race walkers on a high-fat/low-carbohydrate diet
across a series of race-walking stages of increasing intensity
(3). Our reanalysis shows that across four submaximal race-
walking stages, Burke et al.’s participants exercised at mean
relative aerobic intensities that were 2.7 to 4.0 percentage
points lower using %Ėaero max than using %V̇O2max (one-way
ANOVA, P � 0.001) (Fig. 1) (3). The difference between
%Ėaero max and %V̇O2max depended on the race-walking stage
(two-way ANOVA interaction effect P � 0.004) (Fig. 1) (3),
indicating that %Ėaero max and %V̇O2max have different slopes
when plotted against workload or velocity.

Many exercise studies compare individuals at the same
relative aerobic intensities (e.g., 40, 60, 80% V̇O2max) rather
than at task specific mechanical power outputs or velocities (2,
5, 11). Yet, equal %V̇O2max increments typically yield unequal
%Ėaero max increments. Therefore, testing individuals at %Ėaero max

increments may be more appropriate than %V̇O2max for some
scientific questions, such as those related to thermoregulation
where heat dissipation in addition to oxygen delivery signifi-
cantly contribute to the physiological responses during physi-
cal activity or exercise (11).

Furthermore, the use of %Ėaero max vs. %V̇O2max may yield
different scientific conclusions when comparing individuals
across varied diets (3), aerobic training statuses (2), exercise
durations (6, 11), altitudes (17), and/or ambient temperatures
(11). For instance, in the context of endurance performance,
the use of %Ėaero max is more appropriate than the use of
%V̇O2max when comparing individuals that differ in aerobic
training status. That is because the point at which the ratio of
oxidized carbohydrates to fats begins to rapidly increase
(crossover point) occurs at a greater %V̇O2max in aerobically
trained than untrained individuals (2). Hence, the energy yield
per volume of O2 differs between aerobically trained and
untrained individuals at the same relative aerobic intensity
(%V̇O2max and %Ėaero max).

The use of Ėaero may provide more accurate endurance perfor-
mance predictions than the use of V̇O2 alone. To illustrate this, we
compared Joyner’s (12) marathon prediction model using V̇O2 and
Ėaero. Specifically, Joyner (12) predicted a runner’s average mar-
athon running velocity based on their V̇O2 at lactate threshold (LT)
(Eq. 1). For the comparison, we updated Joyner’s equation (Eq. 1)
to incorporate Ėaero (Eq. 2) using a standard conversion (16) and
RER values based on the relationship between RER and
%V̇O2max from high-caliber runners (Eq. 3) (13).

Running velocity�km/h�
� 0.2878 � V̇O2�ml O2 · kg�1 · min�1� at LT � 1.5867 (1)
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Running velocity�km/h� � 0.7712 � Ėaero�W/kg� at LT
� 2.2609 (2)

RER � 0.00005 � %VO2max
2 � 0.00301 � %VO2max

� 0.87729 (3)

Joyner slowed his predicted average marathon running veloc-
ities by 10% to account for air resistance (7–8%) and an upward
drift in V̇O2 that occurs during prolonged exercise (2–3%) (12).
Although the use of Ėaero may eliminate the need to account for
V̇O2 drift, we slowed all predicted average marathon running
velocities by 10% for consistency. We used a hypothetical runner
with a 70 ml O2·kg�1·min�1 V̇o2max, which equates to a 25.6
W/kg %Ėaero max and a lactate threshold that occurs at 80% of
V̇O2max. Lastly, we predicted the hypothetical runner’s average
marathon running velocities using V̇O2 (Eq. 1) and Ėaero (Eq. 2) at
“typical” (0.94) (Eq. 3), low (0.80) and high (1.00) RERs (13, 15).

Predicted average marathon running velocities using V̇O2

(Eq. 1) and Ėaero (Eq. 2) can be identical or they can differ by
1 to 3% since the energy yield per volume of O2 varies
depending on the metabolic fuel mixture (1, 5, 16). For our
hypothetical runner, using V̇O2 and Ėaero at the typical RER
yields the same predicted average marathon running velocity,
15.93 km/h (2:37:18 marathon, hr:min:s). Yet at low and high
RERs, the hypothetical runner’s V̇O2-based predictions remain
the same (15.93 km/h), whereas Ėaero-based predictions change
to 15.50 km/h (2:41:44 h:min:s) and 16.12 km/h (2:35:28
h:min:s), respectively. Thus, Ėaero-based endurance perfor-
mance predictions are likely more accurate than V̇O2-based
predictions because they account for the energy yield per
volume of O2.

While the uptake and presence of oxygen is vital for bodily
functions (7, 8, 14, 21), aerobic energy expenditure provides a
superior measure of exercise economy and maximal aerobic

capacity regarding exercise intensity and endurance performance.
Accordingly, we encourage our colleagues to report both maximal
aerobic capacity (Ėaero max) and exercise economy (Ėaero) as rates
of aerobic energy expenditure to enable the calculation of relative
aerobic intensity as %Ėaero max. Since Ėaero depends on V̇O2 and
substrate oxidation, all studies should at least report V̇O2 and V̇CO2

or RER, enabling readers to calculate Ėaero and compare V̇O2

results to classic studies as desired.
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Fig. 1. Mean relative aerobic intensity as %V̇O2max (�) and as %Ėaero max (Œ)
for elite race walkers on a low-carbohydrate/high-fat diet across 4 submaximal
and 1 maximal race-walking stages (3). � Indicates a difference in relative
intensity percentage points between the 2 calculation methods. Data in this
figure are from Table 4 of Burke et al. (3), and Ėaero is determined using the
reported V̇O2, RER, and a standard conversion (16). We used the energy
equivalent of carbohydrates at Burke et al.’s “max” stage (16). Across walking
stages, relative aerobic intensity was statistically lower using %Ėaero max vs.
%V̇O2max (1-way ANOVA, P � 0.001). Difference between %Ėaero max and
%V̇O2max depended on the race-walking stage (2-way ANOVA, interaction
effect P � 0.004) (3), indicating that %Ėaero max and %V̇O2max have different
slopes when plotted against workload or velocity. This figure is created with
data adapted from Burke et al. (3) as per the Creative Commons Public
License: https://creativecommons.org/licenses/by/4.0/legalcode.
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