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Brief exposure to intermittent hypoxia increases erythropoietin levels in older
adults
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Abstract

Eight 4-min cycles of intermittent hypoxia represent the shortest hypoxic exposure to increase erythropoietin (EPO) levels in
young adults. The impact of aging on the EPO response to a hypoxic stimulus remains equivocal. Thus, the objective of this
study was to determine the effect of the same intermittent hypoxia protocol on EPO levels in older adults. Twenty-two partici-
pants (12 women, age: 53 ± 7 yr) were randomly assigned to an intermittent hypoxia group (IH, n = 11) or an intermittent normoxia
group (IN, n = 11). Intermittent hypoxia consisted of eight 4-min cycles at a targeted oxygen saturation of 80% interspersed with
normoxic cycles to resaturation. Air was made hypoxic by titrating nitrogen into a breathing circuit. Intermittent normoxia con-
sisted of the same protocol, but nitrogen was not added to the breathing circuit. EPO levels were measured before and 4.5 h af-
ter the beginning of each protocol. Intermittent hypoxia lowered oxygen saturation to 82 ±3%, which corresponded to a fraction
of inspired oxygen of 10.9 ± 1.0%. There was a greater increase in EPO levels following intermittent hypoxia than intermittent nor-
moxia (IH: 3.2 ± 2.2 vs. IN: 0.7 ± 0.8 mU/mL, P < 0.01). A single session of eight 4-min cycles of hypoxia increased EPO levels,
the glycoprotein stimulating red blood cell production, in older adults. Exposure to intermittent hypoxia has therefore the poten-
tial to increase oxygen-carrying capacity in a population with reduced red blood cell volume.

NEW & NOTEWORTHY We previously identified the shortest intermittent hypoxia protocol necessary to increase erythropoietin
levels in young adults. The objective of this study was to determine whether the same intermittent hypoxia protocol increases
erythropoietin levels in older adults. Eight 4-min bouts of hypoxia, representing a hypoxic duration of 32 min at a targeted oxy-
gen saturation of 80%, increased erythropoietin levels in older adults, suggesting that exposure to intermittent hypoxia has the
potential to increase oxygen-carrying capacity in an aging population.
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INTRODUCTION

Maximal oxygen consumption, the ability of the cardio-
vascular system to transport and use oxygen duringmaximal
exercise, predicts mortality to the same or potentially greater
extent as traditional risk factors such as smoking, hyperten-
sion, high cholesterol, and type 2 diabetes (1). Maximal oxy-
gen consumption progressively decreases with advancing
age (2). Oxygen transport from the lungs to the exercising
muscles occurs through the binding of oxygen to hemoglo-
bin contained in red blood cells, therefore, both hemoglobin
mass and red blood cell volume strongly correlate withmaxi-
mal oxygen consumption (3). A reduced red blood cell vol-
ume, mainly due to a lower fat-free mass and decreased
physical activity levels, has been reported in older men and
women (4, 5). In these studies, red blood cell volume was cal-
culated from plasma volume and hematocrit levels, which
are greatly influenced by hydration status (6). When directly
assessed, red blood cell count was also reported to decrease
with aging in men (7). Therefore, an intervention that
increases hemoglobin mass and red blood cell volume could

ultimately improve maximal oxygen consumption in an
older population characterized by reduced fat-free mass and
physical activity levels.

Erythropoietin (EPO) stimulates red blood cell production
in response to hypoxia (8). We previously reported that eight
4-min bouts of intermittent hypoxia represent the shortest
hypoxic exposure to increase EPO levels in young adults (9).
With aging, circulating EPO levels have been reported to be
either higher (10–14), lower (15), or not different (16, 17) from
the EPO levels observed in young individuals. However, the
impact of aging on the EPO response to a hypoxic stimulus
remains equivocal. Thus, the objective of this study was to
determine whether eight 4-min bouts of intermittent hy-
poxia also trigger an increase in EPO levels in older adults. A
rise in EPO levels results in the creation of reticulocytes that
mature into red blood cells within 7 days (18). Indeed, a tran-
sient increase in EPO levels induced by a single 90-min ses-
sion of continuous hypoxia resulted in an increased number
of reticulocytes 2 days following the hypoxic exposure (19).
Thus, a secondary objective of this study was to determine
whether a single session of intermittent hypoxia leads to an
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increase in hemoglobinmass in older adults. It was hypothe-
sized that a single exposure to intermittent hypoxia would
increase EPO levels, which would lead to an increased hemo-
globinmass in this population.

METHODS

Participants and Study Design

Both men and women were recruited to participate in
the study. Participants provided written informed consent
for participating in the study, which was approved by the
Institutional Review Board of the University of Texas at
Austin (IRB study number 2017090015). Participants were
excluded from the study if they had uncontrolled hyper-
tension or were taking more than one antihypertensive
medication, were smokers, were pregnant, or had a his-
tory of cardiovascular disease, diabetes, or lung disease.
Twenty-two participants were randomly assigned to an
intermittent hypoxia group (IH, n = 11, 6 women) or a pla-
cebo intermittent normoxia group (IN, n = 11, 6 women).
The study consisted of three visits over a period of 8 days.
Measurements of hemoglobin mass were performed on
visits 1 and 3. The EPO response to intermittent hypoxia
or intermittent normoxia was assessed on visit 2, which
always took place in the morning (start time ranging
between 7:00 and 10:45 am). Visit 3 took place 7 days after
visit 2. Since menstrual blood loss has no impact on hemo-
globin mass (20), visits were scheduled during any phase
of the menstrual cycle in the three premenopausal women
participating in the study. All participants were asked to
avoid alcohol and intense physical activity on the day pre-
ceding all visits.

Intermittent Hypoxia and Intermittent Normoxia

The intermittent hypoxia protocol consisted of eight 4-
min hypoxic cycles at a targeted oxygen saturation of 80%
interspersed with normoxic cycles to resaturation (9).
Participants inhaled hypoxic air through a mask connected
to a two-way rebreathing valve that was itself connected to a
five-liter nondiffusing bag (Hans Rudolph, Inc, Shawnee,
KS). The nondiffusing bag was connected to a gas tank of
compressed air and a gas tank of nitrogen. Air was made
hypoxic by titrating nitrogen into the breathing circuit to
achieve an oxygen saturation of 80%. Each 4-min hypoxic
cycle began once the participant reached an oxygen satura-
tion of 83%. In the present study, it took an average of 3 min
19 s to achieve the targeted oxygen saturation, which was
similar to the average desaturation time of 3 min 10 s previ-
ously observed in young adults (9). Resaturation duration
was on average 1 min 49 in older adults, which was longer
than the average resaturation duration of 1 min 20 s
observed in young adults (9). Intermittent normoxia con-
sisted of the same protocol, but nitrogen was not introduced
in the breathing circuit.

Erythropoietin Levels

EPO levels consistently peak 4 to 4.5 h following the onset
of a continuous hypoxic exposure or intermittent hypoxia
exposure (9, 19, 21–24). Thus, venous blood samples were
collected before and 4.5 h after the beginning of intermittent

hypoxia and intermittent normoxia. Blood was centrifuged,
serum aliquoted, and stored at �80�C for subsequent analy-
ses. Erythropoietin levels were determined using an enzyme-
linked immunosorbent assay (Abcam, Cambridge, UK). The
average coefficient of variation for the erythropoietin assays
was 7.2%.

Hematological Variables

Hemoglobin mass was determined using a modified ver-
sion of the optimized carbonmonoxide rebreathing technique
(25, 26). A venous blood drawwas obtained to determine base-
line carboxyhemoglobin, hematocrit, and hemoglobin levels
(ABL 80 FLEX OSM, Radiometer, Copenhagen, Denmark).
Participants rebreathed a bolus of carbon monoxide from a
low-volume closed-circuit system containing air over a period
of 2 min. Carboxyhemoglobin levels were measured again 10
min after the start of the carbon monoxide rebreathing.
Hemoglobin mass, red blood cell volume, plasma volume,
and total blood volume were calculated from the change in
carboxyhemoglobin levels induced by carbon monoxide
rebreathing (27). In our laboratory, the coefficient of variation
for hemoglobin mass, based on duplicate measures per-
formed on consecutive days in five individuals, is 2.6%.

Pulmonary Gas Exchange and Hemodynamics

On visit 1, average heart rate and blood pressure were calcu-
lated from two measures obtained following 5 min of supine
rest (Omron Healthcare, Inc., Lake Forest, IL). Breath-by-
breath measures of pulmonary gas exchange were collected
using a metabolic cart calibrated with standardized gas
(Ultima Cardio2, MGC Diagnostics, St. Paul, MN) and averaged
every 10 s throughout intermittent hypoxia and intermittent
normoxia. The pneumotachometer was mounted between the
mask and the nonrebreathing valve of the breathing circuit. An
arterial waveform obtained via finger plethysmography and
oxygen saturation obtained via pulse oximetry were continu-
ously recorded throughout both protocols (NOVA, Finapres
Medical Systems, Amsterdam, the Netherlands). Brachial arte-
rial blood pressure, heart rate, stroke volume, cardiac output,
and total peripheral resistance were derived from the arterial
waveform. All data were recorded in LabChart for later analysis
(PowerLab, ADInstruments Inc., Colorado Springs, CO).

Data and Statistical Analyses

Participants’ characteristics were compared using a Student’s
t test. A two-way analysis of variance was used to evaluate the
effect of condition (intermittent hypoxia vs. intermittent nor-
moxia) and time (pre- vs. postintervention) on EPO levels and
hematological variables. When main effects or interactions
were significant, post hoc analyses were performed using
Tukey’s test. Average values for each hemodynamic and pul-
monary gas exchange were calculated for each 4-min hypoxic
cycle of the intermittent hypoxia protocol and each 4-min
normoxic cycle of the intermittent normoxia protocol.
Baseline values for each physiological variable consisted of
the 1-min average preceding the start of the hypoxic and nor-
moxic protocols. A two-way analysis of variance was used to
evaluate the effect of time (baseline and 8 cycles) and condi-
tion (intermittent hypoxia and intermittent normoxia) on he-
modynamic and ventilatory variables. When the main effects
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were significant, post hoc analyses were performed using
Tukey’s test. Pearson’s correlation was used to determine the
relation between oxygen saturation, fraction of inspired oxy-
gen, and changes in EPO levels. A post hoc power analysis
performed using EPO levels before and after intermittent hy-
poxia and intermittent normoxia in our 22 participants
resulted in a power of 0.61. Significance was set at P � 0.05.
Unless stated otherwise, all values are presented as means ±
standard deviations.

RESULTS

Age, weight, height, body mass index, hematocrit levels,
hemoglobin concentration, blood pressure, heart rate, and
physical activity levels were not different between groups
(Table 1). None of the participants had anemia according to
the World Health Organization’s criteria (hemoglobin levels
<12.0 g/dL in women and <13.0 g/dL in men). Visit 3 took
place 7 days following visit 2 for all but one participant for
whom visit 3 took place 8 days following visit 2. EPO levels
were greater during intermittent hypoxia than intermittent
normoxia (main effect for condition, P = 0.02), with greater
postintervention levels observed with intermittent hypoxia
than intermittent normoxia (Fig. 1). EPO levels tended to
increase following exposure to intermittent hypoxia and
intermittent normoxia (main effect for time, P = 0.08). The
change in EPO levels was greater following intermittent hy-
poxia than intermittent normoxia (IH: 3.2 ± 2.2 vs. IN:
0.7 ±0.8 mU/mL, P < 0.01). There was no sex difference for
the change in EPO levels in response to intermittent hypoxia
(women: 3.5 ± 2.1 vs. men: 2.8± 2.5 mU/mL, P = 0.59). There
was a correlation between changes in EPO levels and oxygen
saturation (r = �0.63, P < 0.01) and between changes in EPO
levels and fraction of inspired oxygen (r = �0.75, P < 0.01).
There was no change in any of the hematological variables
in response to either intermittent hypoxia or intermittent
normoxia (Table 2).

Intermittent hypoxia resulted in a lower oxygen saturation
compared with intermittent normoxia (Fig. 2). A greater
heart rate and a lower diastolic blood pressure were observed

in the intermittent hypoxia group in comparison with the
intermittent normoxia group (Fig. 2). Intermittent hypoxia
induced a lower fraction of inspired oxygen in comparison
with intermittent normoxia but did not affect any other ven-
tilatory variables (Fig. 3). A lower respiratory rate, a greater
tidal volume, and a greater minute ventilationwere observed
in the intermittent hypoxia group in comparison to the inter-
mittent normoxia group (Fig. 3).

DISCUSSION

The purpose of the present study was to determine
whether a single session of intermittent hypoxia increases
EPO levels in older adults. Eight 4-min hypoxic cycles at an
oxygen saturation of 82± 3% corresponding to a fraction of
inspired oxygen of 10.9± 1.0% induced a 31% increase in EPO
levels in older adults. In contrast, intermittent normoxia
induced a 9% increase in EPO levels, consistent with the
reported 15% diurnal variation in EPO levels frommidmorn-
ing to late afternoon (21). A secondary objective of the pres-
ent study was to determine whether this single session of
intermittent hypoxia leads to an increase in hemoglobin

Table 1. Participants’ characteristics

Variables IH IN

Age, yr 53 ± 8 54 ± 7
Height, cm 176 ± 10 172 ± 11
Weight, kg 73.2 ± 10.5 73.4 ± 20.0
Body mass index, kg/m2 23.7 ± 2.7 24.6 ± 5.6
Systolic blood pressure, mmHg 116 ± 13 120 ± 10
Diastolic blood pressure, mmHg 75 ±9 77 ± 6
Heart rate, beats/min 60 ± 10 59 ± 11
Hemoglobin, g/dL 13.9 ± 1.3 14.0 ± 1.0
Hematocrit, % 43 ± 4 43 ± 3
Physical activity, h/wk 7.6 ± 9.0 5.1 ± 4.0
Medication use, n
ACE inhibitor 1 0
Angiotensin II blocker 1 0
Beta-blockers 0 1
Statin 2 2
Levothyroxine 0 3
Estrogen/progesterone 0 3

IH, Intermittent hypoxia; IN, Intermittent normoxia; ACE, an-
giotensin-converting enzyme.

Table 2. Hematological variables before and after inter-
mittent hypoxia and intermittent normoxia

IH IN

Variables Pre Post Pre Post

Hemoglobin mass, g 752 ± 189 754 ± 189 800± 179 801 ± 186
Hemoglobin
mass, g/kg

10.3 ± 2.2 10.2 ± 2.1 10.9 ± 1.5 10.9 ± 1.8

Red blood cell
volume, L

2.31 ± 0.58 2.31 ± 0.57 2.45 ±0.55 2.45 ±0.57

Plasma volume, L 3.56 ±0.51 3.68 ±0.46 3.81 ± 0.77 3.69 ±0.72
Blood volume, L 5.87 ± 1.04 5.99 ± 1.00 6.26 ± 1.29 6.15 ± 1.24
Blood volume, mL/kg 80.7 ± 13.3 81.5 ± 12.1 86.5 ± 14.5 84.8 ± 15.4

IH, Intermittent hypoxia; IN, Intermittent normoxia.
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Figure 1. Average and individual erythropoietin levels before (white circles
and bars) and after (gray circles and bars) eight cycles of intermittent hy-
poxia (n = 11, 6 women) and intermittent normoxia (n = 11, 6 women). Values
are presented as means ± standard deviations. Main effect for condition,
�P< 0.05 different from intermittent normoxia.
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mass. Contrary to our hypothesis, one session of intermittent
hypoxia did not induce a rise in hemoglobinmass.

Exposure to hypoxia stabilizes hypoxia-inducible factors
(HIFs) within few minutes, which results in EPO gene tran-
scription and production (8). Aging seems to negatively
impact the EPO response to hypoxia. Indeed, exposure to 3 h
of continuous hypoxia at a targeted oxygen saturation of
80% increased EPO levels in both young and older adults,
however, EPO levels were approximately three times greater
in young versus older adults (28). It was therefore suggested
that an age-dependent defect in HIF-1 action reduced EPO
gene expression in response to hypoxia (29). In the present
study, eight 4-min hypoxic cycles, corresponding to a total
hypoxic duration of 32 min at a targeted oxygen saturation
of 80%, increased EPO levels in older adults. Similarly, this
rise in EPO levels was half the rise in EPO levels previously
observed in response to the same intermittent hypoxia pro-
tocol in young adults (65% vs. 31%) (9). Nonetheless, the
present findings further confirm that a short, intermittent
hypoxic stimulus triggers EPO production, challenging the
long-standing belief that continuous hypoxic exposures
ranging between 84 and 120 min are necessary to trigger an
increase in EPO levels (19, 21–24, 30). The present findings
are supported by the observation that exposure to 30 min of
intermittent hypoxia or 2 h of continuous hypoxia induced
comparable activation of the HIF pathway as defined by

stabilization of HIF-1a protein (31). Thus, intermittent hy-
poxia represents an efficient approach to elicit EPO
production.

A rise in EPO levels leads to the creation of reticulocytes
that eventually mature into red blood cells (18). An increase
in EPO levels induced by a single 90-min session of continu-
ous hypoxia previously resulted in an increased number of
reticulocytes 2 days following the hypoxic exposure in
untrained young men (age: 28.7 ±4.3 yr) (19). Despite the
observed increase in EPO levels in the present study, eight 4-
min hypoxic cycles did not result in an increased hemoglo-
bin mass. It is therefore hypothesized that additional ses-
sions of intermittent hypoxia are necessary to induce an
increase in red blood cell volume and, thereby, hemoglobin
mass. Although EPO levels were not assessed, five consecu-
tive days of a similar intermittent hypoxia protocol, consist-
ing of 4–6 min hypoxic bouts at a mean oxygen saturation of
85% for a total hypoxic duration of �70 min, increased red
blood cell count in young (32) and older adults (33).
Moreover, 15 sessions of intermittent hypoxia increased red
blood cell count and hemoglobin mass in elderly men with
and without coronary artery disease and in individuals at
risk for or with mild chronic obstructive pulmonary disease
(34, 35).

The lower average fraction of inspired oxygen of 10.9%
accompanying intermittent hypoxia did not acutely affect
the respiratory rate, tidal volume, or minute ventilation.
These results are in agreement with our previous findings
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Figure 2. Oxygen saturation (SpO2), blood pressure, heart rate, and car-
diac output at baseline (BSL) and in response to eight cycles of intermit-
tent hypoxia at a targeted oxygen saturation of 80% (black circles, n = 11, 6
women) and eight cycles of intermittent normoxia (white squares, n = 11, 6
women). Values are presented as means ± standard error. †Main effect for
condition, �main effect for time: P< 0.05 different from cycles 1 to 8.
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Figure 3. Respiratory rate, tidal volume, ventilation, and fraction of
inspired oxygen (FiO2) at baseline (BSL) and in response to eight cycles of
intermittent hypoxia at a targeted oxygen saturation of 80% (black circles,
n = 6, 2 women) and eight cycles of intermittent normoxia (white squares,
n = 9, 5 women). Values are presented as means ± standard error. †Main
effect for condition, �main effect for time: P < 0.05 different from cycles 1
to 8.
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that three 4-min hypoxic cycles at a fraction of inspired oxy-
gen of 11.4% and eight 4-min hypoxic cycles at a fraction of
inspired oxygen of 10.4% did not affect minute ventilation
(9, 36), and in accordance with others who showed that
seven 5-min hypoxic cycles at a targeted oxygen saturation
of 75% did not affect ventilation (37). However, the present
findings are in contrast with previous findings that five 6-
min hypoxic cycles at a fraction of inspired oxygen of 10% or
at a targeted oxygen saturation of 80% and seven 5-min
hypoxic cycles at an oxygen saturation of 70–80% increase
ventilation (38–40) through an increase in tidal volume (39).
The present intermittent hypoxia protocol did not induce
change in blood pressure. These results are consistent with
previous findings that repetitive bouts of normobaric, poiki-
locapnic hypoxia, consisting of 4–6 min at a fraction of
inspired oxygen of 10% or at an oxygen saturation of 80%,
did not affect arterial blood pressure in young and older indi-
viduals (9, 36, 38, 39, 41). Heart rate increased during inter-
mittent hypoxia in comparison with intermittent normoxia,
which is consistent with previous findings that seven 5-min
hypoxic cycles at an oxygen saturation of 75% increased
heart rate in older adults (37). Thus, intermittent hypoxia
consisting of eight 4-min hypoxic cycles at a targeted oxygen
saturation of 80% has minimal impact on hemodynamics
and ventilation in older adults.

In conclusion, a single session of intermittent hypoxia eli-
cited a rise in EPO levels in older men and women. Future
studies are needed to determine the minimum number of
intermittent hypoxia sessions necessary to increase hemo-
globin mass and maximal oxygen consumption in this popu-
lation. Thus, intermittent hypoxia potentially represents a
novel intervention tomitigate the decline in oxygen-carrying
capacity associated with the reduced maximal oxygen con-
sumption observed with aging.
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