Data Visualization for • Educational Research

Taylor Martin Active Learning Lab Utah State University

The Opportunity

- I had a bunch here, but you fabulous folks have already covered it!
- The new microscope
- Rich and growing streams of digital learning data
- Better measures of learning and teaching

Data Viz across the pipeline

The Data Pipeline?

For our group...

So at Stage 1...

Cleaning

Cluster & Edit column "Type of Contract"

This feature helps you find groups of different cell values that might be alternative representations of the same thing. For example, the two strings "New York" and "new york" are very likely to refer to the same concept and just have capitalization differences, and "Gödel" and "Godel" probably refer to the same person. Find out more ...

h

Method L	ey collision	Keying Function Tinge	rprivit 🚺		51 clusters found	
Cluster Size	Row Count	Values in Cluster	Merge?	New Cell Value	# Choices in Cluster	
6	18	Firm Fixed Price IDIQ (7 rows) FIRM FIXED PRICE IDIQ (5 rows) Firm Fixed Price (IDIQ) (2 rows) IDIQ Firm Fixed Price (2 rows) Firm Fixed Price - IDIQ (1 rows) Firm Fixed Price ID/IQ (1 rows)		Firm Fixed Price IDIQ	2-6 # Rows in Cluster 0-870 Average Length of Choices 2-71 Length Variance of Choices	
6	868	Firm Fixed Price (836 rows) firm fixed price (22 rows) FIRM FIXED PRICE (5 rows) Firm fixed price (2 rows) Firm Fixed price (2 rows) Firm Fixed Price (1 rows)		Firm Fixed Price		
5	7	FFP & T/M (3 maxs) FFP T&M (1 maxs) FFP & T&M (1 maxs) T&M FFP (1 maxs) T&M & FFP (1 maxs) T&M & FFP (1 maxs)	D	FFP & T/M		
5	9	Fixed price labor hour (5 rows) Fixed Price - Labor Hour (1 rows) Fixed Price - Labor hour (1 rows) Fixed Price / Labor Hour (1 rows)		Fixed price labor hour	0-4.5	
Select All	Desele	ect All		Merge Selected & Re-C	Suster Merge Selected & Close Close	

Knowing what you did later

Changes:	Local	Log			Show graph			
Filter: Ţ			🔕 Branch: All 🗢 User: Al	I 🗧 Structure: All 🗧	🛶 🔊 🕅 🔍			
Date Order		-	Comment	Author	Date			
•		trans	lating title for pages index screen	Benny Degezelle	10/8/09 3:45 PM			
● <u>_</u>		manu	ually merged with master branch	Benny Degezelle	10/8/09 11:59 AM			
		Addi	ng Dutch translations	Benny Degezelle	10/8/09 11:50 AM			
•		remo	ve some useless xhtml talismans	johnmuhl	10/8/09 9:27 AM			
		use h	aml configuration option to trigger html5	johnmuhl	10/8/09 9:25 AM			
		reven	ted to the master version of standard tags	Keith	10/7/09 8:10 PM			
		upda	ted schema.rb and added schema.rb to git	Michael Torfs	10/7/09 5:56 PM			
Hash:	40	e16cdOa	6dbc49086fbed4589342643e5459cb28					
Author: j		ohnmuhl (git@johnmuhl.com) at 10/8/09 9:27 AM						
Commiter:		johnmuhl (git@johnmuhl.com) at 10/8/09 9:27 AM						
Description:		remove some useless xhtml talismans						
Contained in branches: <u>Configure</u>		master, origin/bundler, origin/i18n, origin/master, origin/rails3, origin/ruby19, origin/splits, origin/ui, origin/vendor-cleanup, origin/with_ancestry						

Challenges

- Capacity
 - Particularly for real Big Data
 - Quickly changing teams
- Disparate Data sources and shapes
 - xml combined with json to make sense of game data
 - accessing data through a variety of protocols
 - web services through SOAP or REST
 - Hadoop data through Hive
 - Other types of NOSQL data through proprietary APIs.
 - Tabular or relational still there but changing
- Keeping the pipeline as your guiding framework

But

- New and developing tools to help at this point, e.g.:
 - OpenRefine
 - Trifacta
 - DataTamer
 - Hunk (for Big Data)
- Capacity building efforts within the field

 At this level, this is just starting. Probably
 most behind here.

Stage 2

Raw	Clean & Parse
Roughed	Exploratory Analysis
Report	

Example tasks:

Find/define/refine variables of interest (predicted or emergent)

Visualizations of preliminary results

Mathematical States

Visualizing Trajectories

Post In-Game Level

Iterate on Visualizations

Stage 3a

Theory Building

- Splitting is a theory of how kids learn fractions
- Look splitting does mattter

Prelevel

 Used ARM to determine if a learner bought onions and potatoes (i.e., a 1/3 and a 1/6 state), what else did they buy (e.g., hamburger or a 1/9 state)

Pre Level: Association with Success

Post Level: Association with Success

Present Results to a Variety of Audiences

Neuroscience for AERA

Refraction NIRS Study

Math vs. Refraction Condition

Prefrontal Patch (viewing head-on)

Parietal Patch (viewing from behind)

Math vs. Spatial Condition

Prefrontal Patch (viewing head-on)

Parietal Patch (viewing from behind)

Refraction vs. Spatial Condition

Prefrontal Patch (viewing head-on)

Parietal Patch (viewing from behind)

Representing Change over Time

Changes in students' programming

 Comparing novices and experts
 Development of programming in Scratch

Similarity in Novices' programs

Similarity in (relative) experts' programs

Challenges (Stages 2 & 3a)

Capacity

- Particularly for real Big Data
- Quickly changing teams
- Keeping the pipeline as your guiding framework

But

- New and developing tools to help at this point, e.g.:
 - RStudio
 - Rapid Miner
 - Weka
 - MySQLWorkbench
- Capacity building efforts within the field

 LAMP, programs at CMU, TC, etc
 LASI and events at LAK & EDM
 LearnLab at CMU

Stage 3b

Auto generated representations of student learning, progress, engagement, etc for teachers, parents, students...

We all know I mean dashboards, but hey, I don't have a picture I like

Standard Data Pipeline

Raw Data is cleaned and parsed. List what tools and methods were used in the process . After the data has been cleaned and parsed it then becomes Rough Data.

Rough Data is then analyzed using a variety of tools and techniques such as R, Python, Tableau, or SPSS. The results of the analysis of the Rough Data become Processed Data.

Processed Data, decisions are made as to what specific calculations and analysis should be done for a specific report or paper. The results become Report Specific Data.

Raw Data

Format

Here is where the exact format or file for all data is specified. So for example raw data could be in the form of a .csv, Json, .mp4, .doc, etc. It is also important to document version history and dates.

Location

Usually this Raw Data should be stored on a secure server, or even in a database. This should be made explicit with instructions on how to access the data.

Data Cleaning

Before the data can be analyzed it has to be cleaned and processed in to a usable format and stored in a database.

Format

What format is the data in after it has been cleaned and parsed? What are the files named? What version number is this? All these questions should be answered here, and include meta-data.

Location

Typically, the data at this point should be stored in a database of some kind. Where this data lives and how it is structured should be very explicit.

Analysis

Data is analyzed using tools such as R, Python, Tableau, or SPSS. Often the analysis at this stage is exploratory.

Format

Measures, visualizations, exploratory data files, graphs, charts, etc.

Location

Some processed data might live in a database, but most will reside either on a server or Dropbox. The exact location should be documented.

Analysis

After the data has been explored and processed it is analyzed using calculations and methods with a specific paper or report in mind.

Format

Visualizations, Charts, Graphs, Descriptive Statistics, Inferential Statistics.

Location

Data to be used in a report or paper should be located in the same location as the report. This could either be in Dropbox, or in a Google doc. These should also be archived for future reference.

Challenges

- Teachers are overwhelmed with 900 dashboards, LMSs, games, etc.
- Tools for creating and maintaining your data pipeline limited
- Managing teams

But

- Not a lot here now, guess that's why I thought I might talk about this
- Ideas?

Thank You!

- activelearninglab.org
- taylor.martin@usu.edu

BILL& MELINDA GATES foundation

Extras

Refraction

Pre

Association Rule Learning

- Discover regularities between variables in large datasets
- e.g., Large-scale transaction data recorded by POS systems in supermarkets:

{Onions, Potato Chips} → {Burger}

*Agrawal et al

Initial Conclusions

- Fussing with 1/3 (central conceptual hurdle)
 - Productive even if not achieving obvious goal
- Fussing with 1/2
 - Unproductive unless used to correctly hit target

Cluster Analysis

- Explore Fussing in more depth
- Variables (Generated in Stage 2 with visualizations)
 - Number of unique board states
 - Total number of board states
 - Average time on board state
 - Number of moves till hit 1/3 board state
 - Time on level

Haphazard

Exploration

Careful

Minimal

Relate Clusters to Transfer

- Unproductive
 - Haphazard
 - Minimal
- Productive
 - Exploration
 - Careful